学习的过程可以看作是一种“归纳”的过程,在归纳的时候你需要有一些假设的前提条件。
例如,当你被告知水里游的那个家伙是鱼之后,你使用“在同样的地方生活的是同一种东西”这类似的假设,归纳出“在水里游的都是鱼”这样一个结论。当然这个过程是完全“本能”的,如果不仔细去想,你也不会了解自己是怎样“认识鱼”的。另一个值得注意的地方是这样的假设并不总是完全正确的,甚至可以说总是会有这样那样的缺陷的,因此你有可能会把虾、龟、甚至是潜水员当做鱼。也许你觉得可以通过修改前提假设来解决这个问题,例如,基于“生活在同样的地方并且穿着同样衣服的是同一种东西”这个假设,你得出结论:在水里有并且身上长有鳞片的是鱼。可是这样还是有问题,因为有些没有长鳞片的鱼现在又被排除在外了。
在这个问题上,机器学习面临着和人一样的问题,在机器学习中,一个学习算法也会有一个前提假设,这里被称作“归纳偏执 (bias)”(bias 在机器学习和统计里还有其他许多的意思)。例如线性回归,目的是要找一个函数尽可能好地拟合给定的数据点,它的归纳偏执就是“满足要求的函数必须是线性函数”。一个没有归纳偏执的学习算法从某种意义上来说毫无用处,就像一个完全没有归纳能力的人一样,在第一次看到鱼的时候有人告诉他那是鱼,下次看到另一条鱼了,他并不知道那也是鱼,因为两条鱼总有一些地方不一样的,或者就算是同一条鱼,在河里不同的地方看到,或者只是看到的时间不一样,也会被他认为是不同的,因为他无法归纳,无法提取主要矛盾、忽略次要因素,只好要求所有的条件都完全一样──然而哲学家已经告诉过我们了:世界上不会有任何样东西是完全一样的,所以这个人即使是有无比强悍的记忆力,也绝学不到任何一点知识。
这个问题在机器学习中称作“过拟合 (Overfitting)”,例如前面的回归的问题,如果去掉“线性函数”这个归纳偏执,因为对于 N 个点,我们总是可以构造一个 N-1 次多项式函数,让它完美地穿过所有的这 N 个点,或者如果我用任何大于 N-1 次的多项式函数的话,我甚至可以构造出无穷多个满足条件的函数出来。如果假定特定领域里的问题所给定的数据个数总是有个上限的话,我可以取一个足够大的 N ,从而得到一个(或者无穷多个)“超级函数”,能够 fit 这个领域内所有的问题。然而这个(或者这无穷多个)“超级函数”有用吗?只要我们注意到学习的目的(通常)不是解释现有的事物,而是从中归纳出知识,并能应用到新的事物上,结果就显而易见了。
没有归纳偏执或者归纳偏执太宽泛会导致 Overfitting ,然而另一个极端──限制过大的归纳偏执也是有问题的:如果数据本身并不是线性的,强行用线性函数去做回归通常并不能得到好结果。难点正在于在这之间寻找一个平衡点。不过人在这里相对于(现在的)机器来说有一个很大的优势:人通常不会孤立地用某一个独立的系统和模型去处理问题,一个人每天都会从各个来源获取大量的信息,并且通过各种手段进行整合处理,归纳所得的所有知识最终得以统一地存储起来,并能有机地组合起来去解决特定的问题。这里的“有机”这个词很有意思,搞理论的人总能提出各种各样的模型,并且这些模型都有严格的理论基础保证能达到期望的目的,然而绝大多数模型都会有那么一些“参数”(例如 K-means 中的 k ),通常没有理论来说明参数取哪个值更好,而模型实际的效果却通常和参数是否取到最优值有很大的关系,我觉得,在这里“有机”不妨看作是所有模型的参数已经自动地取到了最优值。另外,虽然进展不大,但是人们也一直都期望在计算机领域也建立起一个统一的知识系统(例如语义网就是这样一个尝试)。
解决过拟合的办法:
-
增加特征
- 增加更全面的数据集
- 增加数据集噪声
-
适当降低模型复杂度
- 使用正则化
- Dropout
- MaxPool
-
减少训练迭代次数
解决欠拟合的办法:
-
增加特征
- 增加数据集数量
- 增加数据集噪声
-
适当增加模型复杂度
- 减少使用正则化
- 减少使用Dropout
- 减少使用MaxPool
-
增加训练迭代次数
参考:
Original link:https://izhangzhihao.github.io//2017/11/22/欠拟合和过拟合/